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Abstract

We use the modified smoothed particle hydrodynamics (MSPH) method to study the propagation of elastic waves in
functionally graded materials. An artificial viscosity is added to the hydrostatic pressure to control oscillations in the shock
wave. Computed results agree well with the analytical solution of the problem. It is shown that, for the same placement of
particles/nodes the MSPH method gives better results than the finite element method when the initial smoothing length in
the MSPH method is 1.1 times the distance between two adjacent particles. Effects of the artificial viscosity are also exam-
ined, and the optimum value of the linear artificial viscosity that minimizes the relative error in computed stresses is found.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Functionally graded structures are inhomogeneous bodies usually comprised of two constituents whose vol-
ume fractions vary continuously throughout the body so as to attain a specific variation of material moduli that
minimizes a critical design variable, e.g. the maximum principal tensile stress or the maximum strain energy den-
sity, or the fundamental frequency of vibration. Lekhnitskii’s [1] book has solutions to many linear elastic prob-
lems for inhomogeneous materials. Batra’s [2] paper has an explicit solution and numerical results obtained by
the finite element method (FEM) for the radial expansion of a circular Mooney–Rivlin cylinder with material
moduli depending upon the radial coordinate. Interest in functionally graded materials (FGMs) seemed to orig-
inate with the International Symposium on FGMs [3]. Since the symposium, the literature on FGMs has
exploded making a comprehensive review in the Section ‘‘Introduction’’ of a paper nearly impossible.

An advantage of FGMs is that the continuous variation of material properties eliminates sharp jumps in
stresses that are likely to occur at interfaces between two distinct materials, as for example in laminated com-
posites. This reduces the likelihood of two layers separating from each other. Also, under dynamic loading,
there will be no wave reflections and refractions at such interfaces since material properties and the acoustic
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impedance vary continuously; this reduces wave dispersions. However, in the traditional FEM, material prop-
erties are evaluated at Gauss or quadrature points, and stresses are generally discontinuous across interele-
ment boundaries unless one uses a mixed formulation and takes stresses also as unknowns; e.g. see [4]. Of
course, these additional unknowns increase the number of variables and hence the number of equations to
be solved. Even when values of material properties at nodes are given as a part of the input data and values
at quadrature points interpolated from these nodal values, stresses across interelement boundaries are discon-
tinuous. Batra and Love [5] by using the traditional FEM to analyze transient plane strain deformations of a
FG linear elastic body have shown that with a fine mesh the computed wave speed, wave profile and the axial
stress at the wave front match very well with their values derived from the analytical solution of Chiu and
Erdogan [6]. Here we use a meshless method, namely the modified smoothed particle hydrodynamics (MSPH)
method [7], to study a plane strain elastodynamic problem and delineate the effect of various parameters on
the accuracy of the computed solution.

The Lagrangian SPH method, due to Lucy [8] and Gingold and Monaghan [9], has been used by Libersky
and Petschek [10] for analyzing finite deformations of an elastoplastic body. There are two weaknesses in the
traditional SPH method: the boundary deficiency in the sense that basis functions do not satisfy consistency
condition near the boundaries and the tensile instability. Chen et al. [11,12] proposed the corrective smoothed-
particle method (CSPM) that removed the tensile instability deficiency of the SPH but not the boundary defi-
ciency. However, the MSPH method is devoid of these two shortcomings of the SPH, and has been used to
analyze two-dimensional transient heat conduction, wave propagation in a homogeneous linear elastic isotro-
pic bar and the localization of deformation into a narrow zone of intense plastic deformation in thermovisco-
plastic materials [13]. Sigalotti et al. [14] have proposed a technique to convert the standard SPH into a
working shock capturing scheme without relying on solutions to the Riemann problem. Their modification
allows solving problems with large discontinuities without using an artificial viscosity.

Wave propagation in FG elastic structures has numerically been studied by several investigators, e.g. see
[15–18]; additional references may be found in [6]. Free and forced vibrations of FG plates by a meshless
method have been analyzed, among others, in [19–26] and wave propagation in a segmented bar comprised
of two materials by Batra and coworkers [27]. Here we study wave propagation, under uniaxial strain condi-
tions, in a FG plate whose material properties vary continuously in the direction of wave propagation.

The rest of the paper is organized as follows. We review the MSPH method in Section 2, and formulate the
wave propagation problem in an isotropic elastic body in Section 3. In Section 4 we compare the presently
computed numerical solution with the analytical solution of Chiu and Erdogan [6], and delineate the effect
on the accuracy of the computed solution of linear artificial viscosity, quadratic artificial viscosity, number
of particles, smoothing length and the kernel function employed in the MSPH method. Findings of this work
are summarized in Section 5 entitled conclusions.

2. The MSPH method

The Taylor series expansion of a function f(x) about the point xðiÞ ¼ ðxðiÞ1 ; x
ðiÞ
2 ; x

ðiÞ
3 Þ is
f ðnÞ ¼ f ðxðiÞÞ þ of

oxðiÞa
na � xðiÞa
� �

þ 1

2

o
2f

oxðiÞa oxðiÞb
na � xðiÞa
� �

nb � xðiÞb

� �
þ � � � ; ð2:1Þ
where a repeated index implies summation over the range of the index, an index enclosed in parentheses is not
summed and Greek indices a, b and c range over 1, 2 and 3. Multiplying both sides of Eq. (2.1) with a kernel
function W(x � n,h) of compact support 2h (i.e., W(x � n,h) = 0 for jx � njP 2h, jx � nj = distance between
points x and n), its first derivative Wc = oW/onc, its second derivative Wcd = o2W/oncond, respectively, inte-
grating over the domain X and neglecting the third and the higher derivative terms yield the following three
equations:
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where fi = f(x(i)), fi; xa ¼ of =oxðiÞa , fi; xaxb ¼ o
2f =oxðiÞa oxðiÞb and dn = dn1 dn2 dn3. Because the kernel function W

is zero for jx � njP 2h (h is the smoothing length), the integration domain X in Eqs. (2.2)–(2.4) equals the
compact support of the kernel function. Eqs. (2.2)–(2.4) can be written in matrix form as
T ¼ BF or T I ¼ BIJ F J ; I ; J ¼ 1; 2; . . . ; 10; ð2:5Þ
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mj and qj signify the mass and the mass density of the particle located at the point x(j) and N denotes the num-
ber of particles in X. The smoothing length h determines a particle’s support, the number N of other particles
with which it interacts and is an important parameter that controls the accuracy of the solution. Eq. (2.5) is
solved simultaneously for F1,F2, . . . ,F10.

Because the truncation error in Eq. (2.1) is of the order jn � x(i)j3, the kernel estimate fi, the first and the
second derivatives fai and fabi obtained by solving Eq. (2.5) are second-order, first-order and zero-order con-
sistent, respectively. In order for the matrix B in Eq. (2.5) to be nonsingular, N must equal at least 3, 6 and 10
for one-, two- and three-dimensional domain X, respectively.

A choice for the kernel function is the modified Gauss function
W ðx� n; hÞ ¼
G

ðh
ffiffi
p
p
Þkd
ðejx�nj2=h2 � e�4Þ; jx� nj 6 2h;

0; jx� nj > 2h;

(
ð2:7Þ
where kd represents the dimensionality of the space and the normalizing constant G equals 1.04823, 1.10081
and 1.18516 for kd = 1, 2 and 3, respectively. The modified Gauss function is continuous at jx � nj = 2h, but
its first- and second-order derivatives are discontinuous there.

3. Formulation of the problem

In rectangular Cartesian coordinates, the conservation equations of mass and linear momentum are
dq
dt
¼ �qUb

;b; ð3:1Þ

dU a

dt
¼ 1

q
rab
;b ; ð3:2Þ
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where U is the velocity vector, r the Cauchy stress tensor and t the time. Here we study a mechanical problem,
and do not consider the energy equation.

Writing the stress tensor as
rab ¼ �Pdab þ Sab; ð3:3Þ

we assume that the hydrostatic pressure P is proportional to the compression ratio. That is,
P ¼ K
q
q0

� 1

� 	
; ð3:4Þ
where K is the bulk modulus and q0 the initial mass density. The Jaumann rate of the deviatoric stress tensor S

is assumed to be related to the strain-rate tensor _eab by
_Sab � Sac _Rbc � Scb _Rac ¼ 2l _eab � 1

3
dab _ecc

� 	
; ð3:5Þ
where l is the shear modulus, d the Kroneker delta and
_eab ¼ 1

2

oU a

oxb
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� 	
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oxb
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� 	
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Thus _R is the spin tensor. The smoothing length h is assumed to vary with deformations of the body, and is
computed by solving
dh
dt
¼ hU b

;b: ð3:8Þ
As is rather well known, large oscillations occur near the shock wave. An artificial viscosity is usually intro-
duced to diminish these oscillations and stabilize the numerical solution. The artificial viscosity Q, which
includes both linear and quadratic terms in the volumetric strain rate _ev ¼ _ecc, is defined as
Q ¼ �CLqck_ev þ CQqk2 _e2
v ; _ev < 0;

0; _ev P 0:

(
ð3:9Þ
Here CL and CQ are, respectively, coefficients of the linear and the quadratic artificial viscosities, c is the
sound speed, k the characteristic length and _�v ¼ Ub

;b the volumetric strain rate. Note that the positive arti-
ficial viscosity is introduced only when the volumetric strain rate is negative. The definition of k is different
for the MSPH and the FE methods; it equals the smoothing length h in the MSPH method, but the mesh
size D in the FEM. Values of coefficients CL and CQ have significant influence on the computed solution; for
the FEM, the usual values are 0.06 and 1.5 in LS-DYNA [28], while they are of order one in the SPH meth-
od. Monaghan [29] suggested their values near 1.0 and 2.0, respectively, while Libersky and Petschek [10]
and Rabczuk et al. [30] set CL = CQ = 2.5. Johnson [31] used the SPH method to study wave propagation,
and found that reasonable results were obtained for CL = 0.5 and CQ = 1.0. However, when their values
were decreased to 0.05 and 1.0 respectively, large oscillations occurred near the shock wave. For
CL = 0.2 and CQ = 4.0 oscillations were still present. Values of these coefficients, especially of the linear
coefficient CL, used in the SPH method are usually an order of magnitude larger than those used in the
FEM.

With the artificial viscosity the stress tensor becomes
rab ¼ �ðP þ QÞdab þ Sab: ð3:10Þ

In order to solve the problem numerically, Eqs. (3.1), (3.2), (3.5) and (3.8) are assumed to hold at each par-

ticle. Kernel estimates of Ub
;c and rab

;c , computed from Eq. (2.5), are substituted into these equations. The
resulting coupled linear ordinary differential equations are integrated with respect to time t by the central-dif-
ference method.
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The stable time step dti of particle i is determined by the Courant–Friedrich–Lewy condition:
Fig. 1.
the rig
dti ¼ 0:3
hi

ci þ jUij
; ð3:11Þ
where ci is the sound speed at particle i, hi its smoothing length and jUij its speed. We choose the time step
Dt = min{dti, i = 1,2, . . . ,Ntot}, where Ntot equals the total number of particles.

Here we study a uniaxial strain problem, namely that of wave propagation in an isotropic and inho-
mogeneous plate because an analytical solution of the problem is available; a schematic sketch of the
problem studied is shown in Fig. 1. We set all components except _eyy of the strain-rate tensor equal to
zero and tacitly assume that the plate dimensions in x- and z-directions are very large as compared to
l. Young’s modulus, E, and the mass density, q, are assumed to vary in the y-direction according to
the relations
EðyÞ ¼ E0 1þ a
y
l

� �m
; ð3:12Þ

qðyÞ ¼ q0 1þ a
y
l

� �n
; ð3:13Þ
where l is the length of the body in the y-direction, a, m and n are material constants, E0 and q0 are Young’s
modulus and the mass density at y = 0. From Young’s modulus, E, and Poisson’s ratio, m, one can compute
the bulk modulus, K and the shear modulus, l, from
K ¼ E
3ð1� 2mÞ ; ð3:14Þ

l ¼ E
2ð1þ mÞ : ð3:15Þ
As in the analytical solution of Chiu and Erdogan [6], the Poisson ratio is taken to be a constant throughout
the body.

An impulsive load given by
rðl; tÞ ¼ r0½HðtÞ � Hðt � t0Þ� ð3:16Þ

is applied on the right edge y = l of the plate. Here H is the Heaviside step function. The left face of the plate is
traction free; i.e.,
rð0; tÞ ¼ 0: ð3:17Þ
y

0

0 t0

0

(   ,t)

t

a b
(a) An inhomogeneous elastic plate free at the left end and loaded by an axial traction applied at the right end; (b) axial traction at

ht end vs. time, t.
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4. Numerical results

Values of various parameters used to compute results are
σ 
/ σ

0
σ 

/ σ
0

a

c

Fig. 2.
analyt
E0 ¼ 226:9 GPa; m ¼ 0:33; q0 ¼ 8900 kg=m3;

a ¼ 0:3; m ¼ 3; n ¼ 1; l ¼ 5 mm; CL ¼ 0:2; CQ ¼ 4:0;

r0 ¼ 1:0 GPa; t0 ¼ 3 ls:
Five hundred uniformly distributed particles are located along the length of the plate in the y-direction, and
the initial smoothing length, h, is set equal to 1.1D where D is the distance between two adjacent particles.

Fig. 2(a)–(d) compares at four different times, 2 ls, 4 ls, 7.11 ls and 12 ls, the distribution of the axial
stress r with that obtained from the analytical solution of Chiu and Erdogan [6]. Subsequent to the application
of the load on the right face, an elastic wave propagates towards the left end. Due to the spatial variation of E

and m, the elastic wave speed Ce is not constant; it is given by
Ce ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� mÞ
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2 ¼

ffiffiffiffiffi
E0

q0

s
a

y
l
þ 1

� �
: ð4:1Þ
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Comparison of the distribution of the axial stress r in the plate computed by the MSPH method with that obtained from the
ical solution at time (a) 2 ls, (b) 4 ls, (c) 7.11 ls and (d) 12 ls.
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The wave speed varies affinely in the y-direction. It takes T ¼
R l

0
1

Ce
dy ¼ 7:11423 ls for the wave to traverse

the plate. For t > 3 ls, the applied load becomes zero and an elastic unloading wave propagates from the right
to the left edge with the wave speed Ce given by Eq. (4.1); see Fig. 2(b).

From Eq. (41) of [6], the magnitude of the jump discontinuity in the axial stress r across the wave front is
given by
Dr
r0

¼ ay=lþ 1

aþ 1


 �mþn
4

: ð4:2Þ
It is clear that for m + n > 0, the magnitude of the stress wave will decrease from y = l to y = 0.
We note that the acoustic impedance, D(y), of the material is given by
DðyÞ ¼ qCe ¼
ffiffiffiffiffiffiffiffiffiffi
E0q0

p
a

y
l
þ 1

� �mþn
2

: ð4:3Þ
Substitution from Eq. (4.3) into Eq. (4.2) gives
Dr
r0

¼

ffiffiffiffiffiffiffiffiffiffi
DðyÞ
DðlÞ

s
: ð4:4Þ
Thus the acoustic impedance determines the variation of the magnitude of the axial stress r. For constant
acoustic impedance, Dr = r0. For example, for a homogeneous material, m = n = 0 and Dr = r0. In the pres-
ent problem, m + n = 4, Dr

r0
¼ ay=lþ1

aþ1
and the magnitude of stress wave varies affinely with y as it propagates

from right to left in the plate. When the stress wave reaches the left end face (see Fig. 2(c)), its magnitude
is given by
rð0Þ ¼ 0þ 1

aþ 1
r0 ¼ 0:76923r0:
From the left end, it is reflected as a negative stress wave, see Fig. 2(d).
It can be seen from Fig. 2 that computed positions of the wave front coincide with those given by the exact

solution. The magnitudes of the computed axial stress at different times also agree well with those given by the
exact solution except near the wave front. The wave front is distorted due to the dissipation introduced by the
artificial viscosity. In Section 4.2 we use results at 4 ls to examine the effect of the artificial viscosity.

4.1. Variation with time of the smoothing length

Fig. 3 depicts the time history of the change in the smoothing length at the particle located at y/l = 0.9. It
shows that the smoothing length changes by less than 0.2% during the passage of the elastic wave at this point;
a similar variation of h with time is observed at other particles. Thus for the present problem, we keep the
smoothing length unchanged.

4.2. The effect of the linear artificial viscosity

We first study the effect of the linear artificial viscosity and set the coefficient CQ equal to zero. Fig. 4 exhib-
its the stress profile, at 4 ls, computed with three different values, 0.0, 0.1 and 0.2, of CL. It can be seen that in
the absence of artificial viscosity, the solution oscillates, the amplitude of oscillations is maximum near the
wave front, and oscillations decay in the wake of the wave. The largest amplitude of the stress wave is about
20% more than that given by the exact solution. With an increase in the value of CL, oscillations decrease and
disappear gradually. However, the wave front becomes less sharp for larger values of CL. For good quality
computed results, these oscillations should be small or absent and the wave front be steep. Thus it is difficult
to determine the optimum value of the linear artificial viscosity without introducing a scalar measure of the
error in the computed stress profile.

Accordingly, we introduce the following relative error in the axial stress to ascertain the accuracy of the
computed solution:
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Fig. 4. At t = 4 ls, variation of the axial stress in the plate for different values of CL.
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g ¼
R l

0
jr� rexactjdyR l
0
jrexactjdy

: ð4:5Þ
The relative error g computed with different values of the artificial viscosity coefficient is depicted in Fig. 5
for 150, 300, 500 and 1000 uniformly spaced particles. In order to compare results from the MSPH method
with those from the FEM we have included results from the FEM computed with nodes coincident with par-
ticles of the MSPH method. Because the smoothing length h plays an important role in the MSPH method, we
have also computed results with three other values 1.5D, 2.0D and 2.5D, of the initial smoothing length.

It is obvious that these results can be divided into three stages. In the first stage, an increase in CL decreases
the amplitude of oscillations. In this stage g decreases rapidly with an increase in CL, the amplitude of oscil-
lations decreases that lowers g but the wave front becomes less sharp that increases g. With a further increase
in the value of CL, the two effects are of the same order of magnitude, the relative error g in the axial stress r
changes slowly, which can be regarded as a relatively flat phase. We define the optimum value of the artificial
viscosity as being one which minimizes g, and set it equal to yc. With a further increase in the value of the
coefficient of linear artificial viscosity, for example when it is greater than 0.2, g has a larger contribution from
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Fig. 5. At time = 4 ls, variation of the relative error in the axial stress r with the linear artificial viscosity coefficient for (a) 150, (b) 300, (c)
500 and (d) 1000, particles computed with (i) the MSPH method by using different values of the initial smoothing length and (ii) the FEM
by using the same nodal locations as in the MSPH method.
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the shape of the wave front than that from oscillations in the stress profile. In this stage, oscillations essentially
disappear; see Fig. 4.

It is clear that the linear artificial viscosity plays an important role in the error in the relative stress. Let gmin

denote the minimal value of the error in the relative stress, and g0 the error in the relative stress when CL = 0.0.
The ratio gmin/g0 for the FE and the MSPH methods with h = 1.1D and different number of particles/nodes is
compared in Table 1. Thus an appropriate value of the linear artificial viscosity can greatly reduce the error in
the relative stress and improve the results. Also with the increase in the number of particles, the improvement
is enhanced. For small number of particles/nodes, the FEM gives a lower value of the relative error than the
MSPH method. However, for the number of particles equal to or greater than 500, the two methods have vir-
tually the same value of gmin/g0.

One can conclude from results depicted in Fig. 5, that the error g increases with a decrease in the number of
particles for both the FE and the MSPH methods. For the MSPH method, g increases with an increase in the
smoothing length. The influence of the smoothing length upon g will be further explored in Section 4.6.

From the plots of Fig. 5 we conclude that for h = 1.1D, errors g in results computed by the MSPH and the
FE methods are nearly the same. It can also be seen that the MSPH method with h = 1.1D will give better



Table 1
Comparison of the ratio gmin/g0 between the FE and the MSPH methods with h = 1.1D

Number of particles 150 300 500 1000

FE 0.567 0.468 0.409 0.331
MSPH 0.628 0.497 0.417 0.340
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results than the FEM for CL 6 0.02, 0.24, 0.18 and 0.14 for 150, 300, 500 and 1000 particles, respectively. We
note that in the initial phase, the slope of curves in Fig. 5 computed by the MSPH method with h = 1.1D is
greater than that of curves obtained with the FEM. This is because the characteristic length k̂ for the MSPH
method is 1.1D, but that for the FEM is D. In order to compare effects of the artificial viscosity on results com-
puted with the FE and the MSPH methods, the abscissa must be replaced by the equivalent linear artificial
viscosity coefficient CLk/D, as has been done in Fig. 6. For 300, 500 and 1000 particles, the relative error g
in the axial stress computed with the MSPH method is smaller than that with the FEM for all values of
the linear artificial viscosity coefficient. But when the number of particles decreases, the relative error g of
the MSPH solution increases a little faster than that of the FE solution. For example, when the number of
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Fig. 6. At time = 4 ls, variation of the relative stress error g with the equivalent coefficient of the linear artificial viscosity for (a) 150, (b)
300, (c) 500 and (d) 1000, particles computed by the MSPH and the FE methods.
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particles is 150, the relative error of the MSPH method is greater than that of the FEM, except when CL is very
small; cf. Fig. 6(a).

Table 2 gives values of the equivalent linear artificial viscosity coefficient for the MSPH method with
h = 1.1D and the FEM. It is obvious that the two values of the equivalent linear artificial viscosity are nearly
the same, except when the number of particles is small, for example, 150.

4.3. Optimum value of linear artificial viscosity

Since the linear artificial viscosity coefficient noticeably affects results, it is important to determine the value
of the coefficient CL that gives ‘‘best’’ results. Ideally, this value of CL should not depend on the smoothing
length h and the number of particles. Recall that yc equals the value of CL that minimizes g. In Table 3, we list
yc for different values of h, and for different number of particles. For a fixed number of particles yc increases
with an increase in the smoothing length h. However, for a fixed h yc decreases with an increase in the number
of particles.

Fig. 7 shows the variation in yc with the dimensionless particle distance D/l for the MSPH method with
h = 1.1D. It is clear that yc decreases with a decrease in D/l, the curve yc vs. D/l is not smooth, and the range
of yc is rather large. Fig. 8(a) compares the relative stress error computed with yc (indicated by the solid line)
Table 2
For different number of particles, comparison of the equivalent linear artificial viscosity between the FE and the MSPH methods with
h = 1.1D

150 300 500 1000

FE 0.148 0.135 0.112 0.091
MSPH, h = 1.1D 0.156 0.136 0.110 0.090

Table 3
Values of yc for different smoothing lengths and number of uniformly spaced particles

Number of particlesnh 1.1D 1.5D 2.0D 2.5D

150 0.142 0.154 0.168 0.170
300 0.124 0.132 0.142 0.151
500 0.100 0.103 0.116 0.127

1000 0.082 0.087 0.095 0.103
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Fig. 7. Variation of yc with the dimensionless distance between two adjacent particles.
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Fig. 8. For h = 1.1D, 1.5D, 2.0D and 2.5D, comparison of the relative stress error g vs. D/l for g computed with CL = yc (solid curve) and
that (dashed curve) with (a) CL = 0.1, (b) CL = 0.06 and (c) CL = 0.2.
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with that for CL = 0.1 (indicated by the dash line) for different smoothing lengths; the difference between the
two diminishes with a decrease in the dimensionless particle distance D/l, and for D/l = 0.001, the two curves
coincide with each other. The results computed with CL = 0.06 and yc and CL = 0.2 and yc are compared in
Fig. 8(b) and (c). When CL = 0.06, the value used in the FEM, the difference between g for CL = 0.06 and that
for CL = yc is much bigger although it decreases when D/l decreases. For CL = 0.2, and CL = yc the difference
between the two sets of results increases when D/l decreases, and results do not converge to the analytical solu-
tion. If CL is taken equal to the value often used in the SPH method, for example, 0.5, 1.0 or 2.5, from Fig. 5 it
can be seen that the relative stress error will be much larger. So 0.1 is a better value for CL in the MSPH
method to simulate wave propagation in the FG plate. This value is larger than the 0.06 often used in the
FEM, and is much smaller than that used in the SPH method.

4.4. Effect of quadratic artificial viscosity

With the linear artificial viscosity coefficient CL set equal to zero, Fig. 9 shows the variation of the relative
stress error g with the quadratic artificial viscosity coefficient CQ. It is found that CQ has negligible effect on
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results. For the MSPH method with h = 1.1D, g decreases from 0.081 to 0.078 when CQ is increased from 0 to
the rather large value, 20. If the linear artificial viscosity is included, the effect of quadratic artificial viscosity is
even smaller, and g only decreases by about 0.1% when CQ is increased from 0 to 20.

Since the effect of the quadratic artificial viscosity is negligible, it has been ignored while computing results
presented below.

4.5. Effect of the number of particles

For uniformly spaced particles and h = 1.1D Fig. 10 exhibits the variation of g with D/l for the MSPH and
the FE methods; nodes in the FE method coincide with particles in the MSPH method. CL in the MSPH
method is taken equal to 0.1, while CL equals 0.11 in the FEM so as to have the same value of the equivalent
linear artificial viscosity coefficient in the two methods. Note that the number of particles equals l/D. For both
methods the relative stress error changes nearly linearly with D/l. The relative stress error for the MSPH
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Fig. 10. Variation of the relative stress error g with the dimensionless distance between adjacent particles for the MSPH with h = 1.1D and
the FEM.
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method is a little smaller than that for the FEM when D/l is less than 0.0066, but the reverse holds for
D/l > 0.0066.

4.6. Effect of the smoothing length h

For 500 particles and CL = 0.1, Fig. 11 shows the variation of the relative stress error with h/D. The relative
stress error increases linearly with the increase in the smoothing length; so a smaller smoothing length will give
better results. However, as stated in Section 2, the smoothing length must be such that the matrix B is non-
singular. In a one-dimensional problem, for every particle to have at least two other particles in its support,
the smoothing length must be greater than D; otherwise the compact support of the kernel of a boundary par-
ticle will contain two particles and the matrix B will be singular. This value of the smoothing length depends
on the maximum strains that occur in the problem. For the problem studied, h = 1.1D is sufficient to ensure
the invertibility of the matrix B. But in problems involving large deformations, the smoothing length will vary
with deformations, and the initial smoothing length should have a larger value.

4.7. Effect of the kernel function

Another important parameter in the MSPH method is the kernel function; three often-used kernel func-
tions are listed below.

Gauss function:
W ðd; hÞ ¼ 1

ðh
ffiffiffi
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p
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Fig. 11. Variation of the relative stress error g with the dimensionless smoothing length, h/D.
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where d = jx � nj/h, and kd equals the dimensionality of the space. For kd = 1, 2 and 3, G = 5/8, 5/4p and 105/
128p for the quartic spline function, and G = 2/3, 10/7p and 1/p for the cubic B-spline function.

For 500 particles, and h = 1.1D, Fig. 12 depicts the variation with the linear artificial viscosity coefficient of
the relative stress error computed with these three kernel functions and the modified Gauss function (2.7). It is
clear that the modified Gauss kernel function gives the smallest value of g regardless of the value of the linear
artificial viscosity coefficient, while the Gauss kernel function has the largest value of g. The difference in the
values of g decreases with an increase in the value of the linear artificial viscosity coefficient, and it vanishes for
large values of CL. The maximum difference between results with the Gauss function and the modified Gauss
function is about 1%, which is large when compared to gmin of 3.4%. It seems that the modified Gauss function
is a good choice for the kernel function in the MSPH method.

4.8. Remarks

We have found optimum values of the smoothing length, coefficient of linear artificial viscosity, the kernel
function and the number of particles for one spatial variation of material parameters along the plate length.
Finding the optimum set of values for different combinations of values of m, n and a in Eqs. (3.12) and (3.13) is
an arduous task, and has not been attempted here. It is our conjecture that these optimum values will also
work for other FG bodies.

5. Conclusions

It has been shown that for wave propagation in a functionally graded elastic material, the MSPH method
gives results very close to those obtained analytically. The artificial viscosity is considered to diminish oscil-
lations near the shock front. Because the material considered is inhomogeneous, the wave speed and the mag-
nitude of the shock front change as the wave propagates in the plate.

By introducing a criterion to determine the error in the computed results, we have examined in detail the
effect of the artificial viscosity on the accuracy of the computed solution. It has been shown that a proper value
of the linear artificial viscosity can greatly reduce the error, while the quadratic artificial viscosity has a neg-
ligible effect. We have also compared results computed by the FE and the MSPH methods. For all values of
the linear artificial viscosity coefficient, the MSPH method with the initial smoothing length h = 1.1 times the
minimum distance, D, between any two adjacent particles gives slightly lower error than the FEM. For
h = 1.1D, the values of the equivalent linear artificial viscosity coefficient at which the relative stress error is
minimum are nearly equal for both the FE and the MSPH methods. The optimum value of the linear artificial
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viscosity coefficient for the MSPH method is found to be 0.1, which is close to that used in the FEM but much
smaller than that used in the SPH method.

Effects of the number of particles, the smoothing length and the kernel function upon the relative error in
the computed solution have also been delineated. The error decreases with an increase in the number of par-
ticles, and a decrease in the smoothing length. However, for uniformly spaced particles in the uniaxial strain
problem, the smoothing length must be greater than the distance between adjacent particles. By comparing
results computed with four different kernel functions, it is found that the modified Gauss function gives the
smallest value of the error, and is thus recommended for the MSPH method.
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[14] L.D.G. Sigalotti, H. López, A. Donoso, E. Sira, J. Klapp, A shock-capturing SPH scheme based on adaptive kernel estimation, J.

Comput. Phys. 212 (2006) 124–149.
[15] M.H. Santare, P. Thamburaj, G.A. Gazonas, The use of graded finite elements in the study of elastic wave propagation in

continuously nonhomogeneous materials, Int. J. Solids Struct. 40 (2003) 5621–5634.
[16] G.R. Liu, X. Han, K.Y. Lam, Stress waves in functionally gradient materials and its use for material characterization, Compos.: Part

B 30 (1999) 383–394.
[17] X. Han, G.R. Liu, K.Y. Lam, Transient waves in plates of functionally graded materials, Int. J. Numer. Methods Eng. 52 (2001) 851–

865.
[18] A.H. Harker, J.A. Ogilvy, Coherent wave propagation in inhomogeneous materials: a comparison of theoretical models, Ultrasonics

29 (1991) 235–244.
[19] L.F. Qian, R.C. Batra, L.M. Chen, Free and forced vibrations of thick rectangular plates by using higher-order shear and normal

deformable plate theory and meshless local Petrov–Galerkin (MLPG) method, CMES: Comput. Model. Eng. Sci. 4 (2003) 519–534.
[20] L.F. Qian, R.C. Batra, L.M. Chen, Static and dynamic deformations of thick functionally graded elastic plate by using higher-order

shear and normal deformable plate theory and meshless local Petrov–Galerkin method, Compos.: part B 35 (2004) 685–697.
[21] L.F. Qian, R.C. Batra, L.M. Chen, Analysis of cylindrical bending thermoelastic deformations of functionally graded plates by a

meshless local Petrov–Galerkin method, Comput. Mech. 33 (2004) 263–273.
[22] L.F. Qian, R.C. Batra, Transient thermoelastic deformations of a thick functionally graded plate, J. Therm. Stresses 27 (2004) 705–

740.
[23] R.C. Batra, J. Jin, Natural frequencies of a functionally graded rectangular plate, J. Sound Vib. 282 (2005) 509–516.



390 G.M. Zhang, R.C. Batra / Journal of Computational Physics 222 (2007) 374–390
[24] A. Ferreira, R.C. Batra, Natural frequencies of orthotropic, monoclinic and hexagonal plates by a meshless method, J. Sound Vib.
285 (2005) 734–742.

[25] U. Andreaus, R.C. Batra, M. Porfiri, Vibrations of cracked Euler–Bernoulli beams using meshless local Petrov–Galerkin (MLPG)
Method, CMES: Comput. Model. Eng. Sci. 9 (2005) 111–131.

[26] A.J.M. Ferreira, R.C. Batra, C.M.C. Roque, L.F. Qian, R.M.N. Jorge, Natural frequencies of functionally graded plates by a
meshless method, Compos. Struct. 75 (2006) 593–600.

[27] R.C. Batra, M. Porfiri, D. Spinello, Free and forced vibrations of a segmented bar by a meshless local Petrov–Galerkin (MLPG)
formulation, Comput. Mech., doi:10.1007/s00466.006.0049.6.

[28] LS-DYNA theoretical manual, Livermore Software Technology Corporation, 1998.
[29] J.J. Monaghan, Smoothed particle hydrodynamics, Annu. Rev. Astron. Astrophys. 30 (1992) 543–574.
[30] T. Rabczuk, J. Eibl, L. Stempniewski, Numerical analysis of high speed concrete fragmentation using a meshfree Lagrangian method,

Eng. Fract. Mech. 71 (2004) 547–556.
[31] G.R. Johnson, Artificial viscosity effects for SPH impact computations, Int. J. Impact Eng. 18 (1996) 477–488.

http://dx.doi.org/10.1007/s00466.006.0049.6

	Wave propagation in functionally graded materials by  modified smoothed particle hydrodynamics (MSPH) method
	Introduction
	The MSPH method
	Formulation of the problem
	Numerical results
	Variation with time of the smoothing length
	The effect of the linear artificial viscosity
	Optimum value of linear artificial viscosity
	Effect of quadratic artificial viscosity
	Effect of the number of particles
	Effect of the smoothing length h
	Effect of the kernel function
	Remarks

	Conclusions
	Acknowledgments
	References


